Synthesis, optical property and photoexcited carrier dynamics of phase stable and less-defect perovskite quantum dots
Qing Shen a, Feng Liu a, Chao Ding a
a Faculty of Informatics and Engineering, The University of Electro-Communications, Japan, 1-5-1 Chofugaoka, Chofu, Tokyo, Japan
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#AdvMatSyn22. Advanced Materials Synthesis, Characterization, and Theory: for the Green Energy Leap
Online, Spain, 2022 March 7th - 11th
Organizer: Francesca Toma
Keynote, Qing Shen, presentation 073
DOI: https://doi.org/10.29363/nanoge.nsm.2022.073
Publication date: 7th February 2022

Perovskite quantum dots (QDs) as a new type of colloidal nanocrystals (NCs) have gained significant attention for both fundamental research and applications of optoelectronic devices owing to their appealing optoelectronic properties and excellent chemical processability. For their wide range of potential applications, synthesizing colloidal QDs with high crystal quality and stability is of crucial importance. However, like most common QD systems, those reported perovskite QDs still suffer from a certain density of trapping defects, giving rise to detrimental non-radiative recombination centers and thus quenching luminescence. Very recently, we have suceeded in synthesis of phase stable and less defect preovksite QDs, including APbX3 NCs (A: FA, MA, Cs; X: I, Br, Cl) and Sn-Pb alloyed NCs [1-5]. We have demonstrated that a high room-temperature photoluminescence quantum yield (PL QY) of close to 100% can be obtained in the APbX3 perovskite QDs, signifying the achievement of ignorable less trapping defects in the APbX3 QDs. Ultrafast kinetic analysis with time-resolved transient absorption spectroscopy evidences the negligible electron or hole trapping pathways in our QDs, which explains such a high quantum efficiency. In addtion, photoexcited hot and cold carrier dynamics as well as charge transfer at the heterojunction of QD/metal oxide were systematically investigated [4]. Solar cells based on these high-quality perovskite QDs exhibit power conversion efficiency of over 12%, showing great promise for practical application. On the other hand, through incorporation of alkali ion Na+, we have realized for the first time efficient near-infrared emission from highly defective Sn-Pb perovskite QDs with substantially improved PL QY from ~0.3% to 28% [5]. Our findings provide new insights into the materials design strategies for improved optoelectronic properties of Sn-containing perovskites. We anticipate their use in near-infrared devices is very promising if issues of the sustainability of PL QY can be fully addressed in the near future.   

This research was supported by the Japan Science and Technology Agency (JST) MIRAI program (JPMJMI17EA) and the MEXT KAKENHI Grant (17H02736 and 20H02565).

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info