Proceedings of nanoGe Spring Meeting 2022 (NSM22)
DOI: https://doi.org/10.29363/nanoge.nsm.2022.072
Publication date: 7th February 2022
Metal halide perovskites have attracted substantial interest due to their accessible fabrication process, promising properties for optoelectronic applications. The doping of cations in lattice of perovskite can therefore endow host many novel properties. However, the post-synthetic treatment of perovskite ABX3 nanocrystals (e.g., FAPbI3 or CsPbCl3) for doping remains elusive. The straightforward doping method for both A and B sites are rarely reported, which hinders the further application of optimized doping materials for optoelectronic devices. Herein, employing hybrid water-oil phase (water-hexane), we have partially replaced of Cs or Pb with FA and Mn by similar method for the first time, respectively. Taking advantage of in-situ photoluminescence tracking, we have distinguished the doping process and proposed a model to provide better understanding for the doping process. What’s more, this method could not only be use for doping, but also for synthesis of new materials. This study hence provides a controllable way for doping metal halide perovskites or even synthesis new materials to meet more complexed and specific requirements for different applications.