n-Type organic electrochemical transistors: materials and challenges
Simone Fabiano a
a Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#OMIECs22. Organic mixed-ionic-electronic conductors and their application in Emerging Technologies
Online, Spain, 2022 March 7th - 11th
Organizers: Aristide Gumyusenge and Alexander Giovannitti
Invited Speaker, Simone Fabiano, presentation 060
DOI: https://doi.org/10.29363/nanoge.nsm.2022.060
Publication date: 7th February 2022

Organic electrochemical transistors (OECTs) are in a stage of rapid development as novel applications that use these versatile devices continue to emerge. OECTs are characterized by the coupling of both ionic and electronic inputs to modulate transistor channel conductance, which makes them ideal for interfacing electronics with biology. However, the current performance mismatch between p-type (hole-transporting) and n-type (electron-transporting) OECTs hinders the development of power-efficient complementary devices/circuits, essential to many (bio-)electronic applications. Here, we will summarize our effort to develop n-type mixed ionic-electronic conducting polymers for OECTs. We will discuss the impact of polymer backbone rigidity and molecular weight on the OECT performance. We will show large-area printing/integration of these devices and demonstrate neurosynaptic circuits capable of Hebbian learning.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info