Proceedings of nanoGe Spring Meeting 2022 (NSM22)
DOI: https://doi.org/10.29363/nanoge.nsm.2022.006
Publication date: 7th February 2022
Multiply-excited states in semiconductor nanocrystals feature intriguing physics and play a crucial role in nanocrystal-based technologies. While photo-luminescence provides a natural probe to investigate these states, room temperature single-particle spectroscopy of their emission has so far proved elusive due to the temporal and spectral overlap with emission from the singly excited and charged states. In this work, we perform heralded spectroscopy of single quantum dots by incorporating the rapidly developing technology of single-photon avalanche diode arrays in a spectrometer setup. This allows us to directly observe the biexciton-exciton emission cascade and to measure the biexciton binding energy of single nanocrystals at room temperature, even though it is well below the scale of thermal broadening of the transitions due to finite temperature and that of spectral diffusion, the shift of the transition energy due to fluctuating electric fields. Single-particle heralded spectroscopy enables us to identify correlations of the biexciton binding energy with both charge-carrier confinement and fluctuations of the local electrostatic potential, which are masked in ensemble measurements, and to overcome artifacts due to inhomogeneous broadening [1]. Time-resolved spectrometry, as demonstrated here, has the potential of greatly extending our understanding of charge carrier dynamics in multielectron systems and of parallelization of quantum optics protocols.