Proceedings of International Conference on Perovskite Thin Film Photovoltaics and Perovskite Photonics and Optoelectronics (NIPHO23)
DOI: https://doi.org/10.29363/nanoge.nipho.2023.022
Publication date: 3rd April 2023
In the last decade, halide perovskites have emerged as promising low-cost semiconductors thanks to their unique optical and electronic properties and tunable bandgap [1]. These optoelectronic features have driven exceptional performances of perovskite single-junction, multi-junction solar cells (SCs), light-emitting diodes (LEDs), X-ray detectors, and transistors.[2] These exceptional performances have been obtained by fabricating perovskite materials via solution-based deposition methods, which pose challenges for industrial-scale processing.
In this talk, I will show why thermal evaporation is a promising perovskite fabrication technique to bring this technology closer to reliable and extended production, by relying on excellent size scalability, promising stability, fine composition/properties control, and surface adaptability [5]. The co-evaporated perovskite thin films are uniform over large areas with low surface roughness and a long carrier lifetime.
I will discuss the rationale behind designing highly efficient co-evaporated optoelectronics devices with remarkable structural stability and impressive thermal stability [4]. I will show how vapor deposition also allows fine composition control to tailor the optimization in specific device architectures [5]. A fundamental understanding of perovskite’s electronic and optical properties allows for overcoming the materials’ limitations when implemented in devices such as perovskite SCs, and mini-modules [6]. These results represent a significant step toward the scalability of the perovskite technology.
References
1. S. D. Stranks et al, Science 2013, 342, 341; G. Xing et al Science 2013, 342, 344; D. P. McMeekin et al., Science 2016, 351, 151; V. D’Innocenzo et al, Journal of the American Chemical Society 2014, 136, 17730
2. NREL. Best Research-Cell Efficiency Chart; U.S. Department of Energy; https://www.nrel.gov/pv/cell-efficiency.htm., Y. Cho, H. Ri Jung, W. Jo, Nanoscale, 2022, 14, 9248
3. F. U. Kosasih, E. Erdenebileg, N. Mathews, S. G. Mhaisalkar, A. Bruno, Joule 2022, 6, 2692-2734, Ávila, C. Momblona, P. P. Boix, M. Sessolo, H. J. Bolink, Joule 2017, 1, 431; Y. Vaynzof, Adv. Energy Mater 2020, 10, 2003073.
4. HA Dewi, L Li, W Hao, N Mathews, S Mhaisalkar, A Bruno, Adv. Funct. Mater. 2021 2100557,
5. H.A. Dewi, L. Jia, E. Erdenebileg, H. Wang, Mi. De Bastiani, S.De Wolf, N Mathews, S Mhaisalkar, A Bruno, Sust. Energy & Fuels. 2022, 6, 2428; J Li, HA Dewi, W Hao, J Zhao, N Tiwari, N Yantara, T Malinauskas, V Getautis, T J. Savenije, N Mathews, S. Mhaisalkar, A Bruno, Adv. Funct. Mater. 2021.
6. J. Li, H. Wang, X. Y. Chin, H. A. Dewi, K. Vergeer, T. W. Goh, J. W. M. Lim, J. H. Lew, K. P. Loh, C. Soci, T. C. Sum, H. J. Bolink, N. Mathews, S. Mhaisalkar, A. Bruno, Joule 2020, 4, 1035; L Li, HA Dewi, W Hao, L Jia Haur, N Mathews, S Mhaisalkar, A Bruno, Solar RRL, 2020, 4, 2000473