Customizing Co-Evaporated Perovskites for Optoelectronic Devices
Annalisa Bruno a
a Energy Research Institute @ NTU, Nanyang Technological University, Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, 637553, Singapore
Invited Speaker, Annalisa Bruno, presentation 022
DOI: https://doi.org/10.29363/nanoge.nipho.2023.022
Publication date: 3rd April 2023

In the last decade, halide perovskites have emerged as promising low-cost semiconductors thanks to their unique optical and electronic properties and tunable bandgap [1]. These optoelectronic features have driven exceptional performances of perovskite single-junction, multi-junction solar cells (SCs), light-emitting diodes (LEDs), X-ray detectors, and transistors.[2] These exceptional performances have been obtained by fabricating perovskite materials via solution-based deposition methods, which pose challenges for industrial-scale processing.

In this talk, I will show why thermal evaporation is a promising perovskite fabrication technique to bring this technology closer to reliable and extended production, by relying on excellent size scalability, promising stability, fine composition/properties control, and surface adaptability [5]. The co-evaporated perovskite thin films are uniform over large areas with low surface roughness and a long carrier lifetime.

I will discuss the rationale behind designing highly efficient co-evaporated optoelectronics devices with remarkable structural stability and impressive thermal stability [4].  I will show how vapor deposition also allows fine composition control to tailor the optimization in specific device architectures [5]. A fundamental understanding of perovskite’s electronic and optical properties allows for overcoming the materials’ limitations when implemented in devices such as perovskite SCs, and mini-modules [6]. These results represent a significant step toward the scalability of the perovskite technology.

References

1. S. D. Stranks et al, Science 2013, 342, 341; G. Xing et al  Science 2013, 342, 344; D. P. McMeekin et al., Science 2016, 351, 151; V. D’Innocenzo et al, Journal of the American Chemical Society 2014, 136, 17730

2. NREL. Best Research-Cell Efficiency Chart; U.S. Department of Energy; https://www.nrel.gov/pv/cell-efficiency.htm., Y. Cho, H. Ri Jung, W. Jo, Nanoscale, 2022, 14, 9248

3. F. U. Kosasih, E. Erdenebileg, N. Mathews, S. G. Mhaisalkar, A. Bruno, Joule 2022, 6, 2692-2734, Ávila, C. Momblona, P. P. Boix, M. Sessolo, H. J. Bolink, Joule 2017, 1, 431; Y. Vaynzof, Adv. Energy Mater 2020, 10, 2003073.

4. HA Dewi, L Li, W Hao, N Mathews, S Mhaisalkar, A Bruno, Adv. Funct. Mater. 2021 2100557,

5. H.A. Dewi, L. Jia, E. Erdenebileg, H. Wang, Mi. De Bastiani, S.De Wolf, N Mathews, S Mhaisalkar, A Bruno, Sust. Energy & Fuels. 2022, 6, 2428; J Li, HA Dewi, W Hao, J Zhao, N Tiwari, N Yantara, T Malinauskas, V Getautis, T J. Savenije, N Mathews, S. Mhaisalkar, A Bruno, Adv. Funct. Mater. 2021.

6. J. Li, H. Wang, X. Y. Chin, H. A. Dewi, K. Vergeer, T. W. Goh, J. W. M. Lim, J. H. Lew, K. P. Loh, C. Soci, T. C. Sum, H. J. Bolink, N. Mathews, S. Mhaisalkar, A. Bruno, Joule 2020, 4, 1035;  L Li, HA Dewi, W Hao, L Jia Haur, N Mathews, S Mhaisalkar, A Bruno, Solar RRL, 2020, 4, 2000473

 

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info