Proceedings of International Conference on Perovskite Thin Film Photovoltaics and Perovskite Photonics and Optoelectronics (NIPHO22)
DOI: https://doi.org/10.29363/nanoge.nipho.2022.003
Publication date: 11th November 2021
In the search for stable perovskite photovoltaic technology, carbon-based perovskite solar cells (C-PSCs) represent a valid, stable solution for near-future commercialization. However, a complete understanding of the operational device stability calls for assessing the device robustness under thermal stress. Herein, the device response is monitored upon a prolonged thermal cycle aging (heating the device for 1 month up to 80 °C) on state-of-the-art C-PSCs, often neglected, mimicking outdoor conditions. Device characterization is combined with in-house-developed advanced modeling of the current–voltage characteristics of the C-PSCs using an iterative fitting method based on the single-diode equation to extrapolate series (RS) and shunt (RSH) resistances. Two temperature regimes are identified: Below 50 °C C-PSCs are stable, and switching to 80 °C a slow device degradation takes place. This is associated with a net decrease of the device RSH, whereas the RS is unaltered, pointing to interface deterioration. Indeed, structural and optical analyses, by means of X-ray diffraction and photoluminescence studies, reveal no degradation of the perovskite bulk, providing clear evidence that perovskite/contact interfaces are the bottlenecks for thermal-induced degradation in C-PSCs.
The authors acknowledge the “HY-NANO” project that has received funding from the European Research Council (ERC) Starting Grant 2018 under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 802862) and from the project FARE Ricerca in Italia FARE Ricerca in Italia EXPRESS (R18ENKMTA3).