2D/3D Hybrid Perovskite Interfaces and Physics therein for Stable and Efficient Solar Cells
Giulia Grancini a
a University of Pavia, Italy, Via Taramelli 16, Pavia, 27100, Italy
Invited Speaker, Giulia Grancini, presentation 045
DOI: https://doi.org/10.29363/nanoge.nipho.2020.045
Publication date: 25th November 2019

Solar energy can lead a “paradigm shift” in the energy sector with a new low-cost, efficient, and stable technology. Nowadays, three-dimensional (3D) methylammonium lead iodide perovskite solar cells are undoubtedly leading the photovoltaic scene with their power conversion efficiency (PCE) >25%, holding the promise to be the near future solution to harness solar energy [1]. Tuning the material composition, i.e. by cations and anions substitution, and functionalization of the device interfaces have been the successful routes for a real breakthrough in the device performances [2]. However, poor device stability and still lack of knowledge on device physics substantially hamper their take-off. Here, I will show a new concept by using a different class of perovskites, arranging into a two-dimensional (2D) structure, i.e. resembling natural quantum wells. 2D perovskites have demonstrated high stability, far above their 3D counterparts [3]. However, their narrow band gap limits their light-harvesting ability, compromising their photovoltaic action. Combining 2D and 3D into a new hybrid 2D/3D heterostructure will be here presented as a new way to boost device efficiency and stability, together. The 2D/3D composite self-assembles into an exceptional gradually organized interface with tunable structure and physics. To exploit new synergistic function, interface physics, which ultimately dictate the device performances, is explored, with a special focus on charge transfer dynamics, as well as long term processing happening during aging. As shown in Fig.1, when 2D perovskite is used on top of the 3D, an improved stability is demonstrated. 2D perovskite acts as a sheath to physically protect the 3D underneath. In concomitance, we discovered that the stable 2D perovskite can block ion movement, improving the interface stability on a slow time scale. The joint effect leads to PCE=20% which is kept stable for 1000 h [3,4]. Incorporating the hybrid interfaces into working solar cells is here demonstrated as an interesting route to advance in the solar cell technology bringing a new fundamental understanding of the interface physics at multi-dimensional perovskite junction. The knowledge derived is essential for a deeper understanding of the material properties and for guiding a rational device design, even beyond photovoltaics.

Acknowledgements I acknowledge the “HY-NANO” project that has received funding from the European Research Council (ERC) Starting Grant 2018 under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 802862).

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info