Proceedings of International Conference on Perovskite Thin Film Photovoltaics and Perovskite Photonics and Optoelectronics (NIPHO20)
DOI: https://doi.org/10.29363/nanoge.nipho.2020.023
Publication date: 25th November 2019
Mixed halide perovskites (MHP) have been highlighted as promissory materials in optoelectronics, due to their improved light harvesting, photocarrier generation, and the ease for tuning their optical properties, specially their band gap.[1] These features have opened the door to analogous solar driven process as photocatalysis for carrying out the photodegradation of recalcitrant organic compounds more efficiently.[2] Nonetheless, the photocatalytic (PC) activity of MHP mainly depends on the surface chemical environment formed during their synthesis. This correlation has not been studied yet. In this work, we deduced the nature and the role of surface chemical states of MHP nanocrystals (NC) synthesized by hot-injection (H-I) and anion-exchange (A-E) methods, on their PC performance for the oxidation of β‑naphthol as a model system. We identified iodide vacancies as the main surface chemical states that promote the formation of highly reactive superoxide ions. These species define the PC activity of A‑E-MHP. Conversely, the PC performance of H-I-MHP is dictated by an adequate balance between band gap and highly oxidizing valence band. In this context, MHP can be considered as good photocatalysts for efficient environmental remediation.