Proceedings of nanoGe International Conference on Perovskite Solar Cells, Photonics and Optoelectronics (NIPHO19)
DOI: https://doi.org/10.29363/nanoge.nipho.2019.016
Publication date: 21st November 2018
In experiments with concentrated sunlight, we previously demonstrated a strong effect of sample temperature on the photochemical decomposition of MAPbI3 thin films [1]. The latter was accompanied with degradation of the perovskite light absorption and growth of PbI2 peaks in the UV-Vis light absorption spectra and XRD patterns. Here, we report a systematic study of the initial stages of photodegradation of MAPbI3 thin films with independent control of the sample temperature and light intensity (from 50 to 700 suns). We demonstrated that photostability of the MAPbI3 film is extremely sensitive to the sample temperature. Under the combined action of light and heat (either by concentrated sunlight or by external heating), a strong reduction of the film photoluminescence (PL) without changes in the perovskite light absorption was observed during the initial stages of degradation. On the contrary, illumination of perovskite films (with intensity up to 500 suns) without heating (using chopped concentrated sunlight) induces considerable PL enhancement while the optical absorption spectrum remains unchanged. Underlying mechanisms for the observed effects are discussed on the basis of micrometer-scale Raman and PL mapping of the samples treated under various experimental conditions.