DOI: https://doi.org/10.29363/nanoge.nias.2021.018
Publication date: 13th September 2021
A great demand exists for minimally-invasive neuromodulation technologies to enable next-generation bioelectronic medicine. We report on our developments of ultrathin (opto)electronic devices for neurostimulation. All of these devices rely on far red/near infrared irradiation in the tissue transparency window to actuate nanoscale organic semiconductor components. Our flagship technology is the organic electrolytic photocapacitor (OEPC) – a device that mimics biphasic current-pulse neurostimulation and thus transduces an optical signal into directly-evoked action potentials in neurons. These devices are not only wireless, but also 100-1000 times thinner than existing technologies. We will discuss chronic implants capable of stimulating peripheral nerves (sciatic and vagus) when actuated from outside of the body using diode lasers. Light power can be safely and effectively transmitted to implants up to 15 mm below the skin surface. We have observed stable operation in rodent models for at least 100 days. We believe that the combination of deep red light and ultrathin photovoltaic devices can account for a new paradigm in wireless bioelectronic medicine.