Proceedings of Materials for Sustainable Development Conference (MAT-SUS) (NFM22)
DOI: https://doi.org/10.29363/nanoge.nfm.2022.315
Publication date: 11th July 2022
Carbon capture, conversion and utilization (CCU) is gaining attention from the worldwide community for its ability to minimize CO2 accumulation in the atmosphere. Electroreduction of CO2 (eR-CO2) in combination with renewable electricity sources can be one of routes to achieve the target. Economic viability of eR-CO2 relies on improved performance accompanied with scalable system design. Membranes are commonly used for the separation of reduction and oxidation products as well as to provide a suitable micro-environment for CO2R. Commercial membranes often address only one of the key challenges in CO2R: either they offer suitable micro-environment for CO2R (e.g., anion exchange membrane) or suppress carbonate cross-over (e.g., cation exchange membrane and bipolar membrane). Here, we present a cation-infused ultrathin (~3 µm) solid polymer electrolyte (CISPE) that concomitantly addresses both of these challenges via bidirectional ion transport mechanism and suppressed anolyte diffusion. The CISPE was directly deposited into the copper cathode catalyst, eliminating the requirement of a standalone membrane. Our demonstrated system offers high selectivity towards CO2 electrolysis (~90%) and a single-pass CO2 utilization of ~18% at 200 mA/cm2 with the primary product being ethylene (faradaic efficiency of 65%). Our directly-deposited CISPE enabled record low energy consumption of 294 GJ/ton C2H4 along with ~110 hours of stable operation with C2H4 as the primary product. The present work offers a versatile design paradigm for functional polymer electrolyte, opening doors towards stable, and efficient electrolysis for high-value feedstock chemicals and fuels production using low-cost catalysts.