Proceedings of Materials for Sustainable Development Conference (MAT-SUS) (NFM22)
DOI: https://doi.org/10.29363/nanoge.nfm.2022.226
Publication date: 11th July 2022
The rising demand of rechargeable batteries for electric vehicles and grid storage applications sparks a lot of interest on alternatives to “standard Li-ion battery technology”. The size of these markets is so large that great efforts are currently undertaken towards using more cost-effective materials that will not run into supply and/or resource constraints. Here, sodium-ion batteries are one important option that primarily aim at realizing high energy batteries based on sodium and other abundant elements such as carbon, iron or manganese.[1] On the other hand, solid-state batteries (SSBs) are considered as promising option for electric vehicles. In these types of batteries, a solid electrolyte replaces the flammable organic liquid electrolyte, which improves safety. At the same time, SSBs might enable energy densities exceeding conventional lithium-ion technology.
This talk gives an overview on materials aspects on sodium-ion and solid-state batteries and how they compare to lithium-ion batteries. Specific examples on inorganic materials will be discussed, including high capacity metal/carbon negative electrodes[2], layered oxides of the type Na[MnxFeyTMz]O2[3], solvent co-intercalation reactions (graphite)[4] and metal sulfides (CuS, Cu3PS4, NaTixTMyS2)[5] (TM = transition metal).
[1] aI. Hasa, S. Mariyappan, D. Saurel, P. Adelhelm, A. Y. Koposov, C. Masquelier, L. Croguennec, M. Casas-Cabanas, Journal of Power Sources 2021, 482; bY. Li, Y. Lu, P. Adelhelm, M. M. Titirici, Y. S. Hu, Chemical Society Reviews 2019, 48, 4655-4687; cP. K. Nayak, L. Yang, W. Brehm, P. Adelhelm, Angewandte Chemie - International Edition 2018, 57, 102-120.
[2] aT. Palaniselvam, C. Mukundan, I. Hasa, A. L. Santhosha, M. Goktas, H. Moon, M. Ruttert, R. Schmuch, K. Pollok, F. Langenhorst, M. Winter, S. Passerini, P. Adelhelm, Advanced Functional Materials 2020, 30; bT. Palaniselvam, M. Goktas, B. Anothumakkool, Y. N. Sun, R. Schmuch, L. Zhao, B. H. Han, M. Winter, P. Adelhelm, Advanced Functional Materials 2019, 29.
[3] L. Yang, J. M. L. del Amo, Z. Shadike, S. M. Bak, F. Bonilla, M. Galceran, P. K. Nayak, J. R. Buchheim, X. Q. Yang, T. Rojo, P. Adelhelm, Advanced Functional Materials 2020, 30.
[4] aI. Escher, Y. Kravets, G. A. Ferrero, M. Goktas, P. Adelhelm, Energy Technology 2021, 9; bM. Goktas, C. Bolli, E. J. Berg, P. Novák, K. Pollok, F. Langenhorst, M. V. Roeder, O. Lenchuk, D. Mollenhauer, P. Adelhelm, Advanced Energy Materials 2018, 8; cB. Jache, P. Adelhelm, Angew. Chem. Int. Ed. 2014, 53, 10169-10173.
[5] aA. L. Santhosha, N. Nazer, R. Koerver, S. Randau, F. H. Richter, D. A. Weber, J. Kulisch, T. Adermann, J. Janek, P. Adelhelm, Advanced Energy Materials 2020, 10; bW. Brehm, A. L. Santhosha, Z. Zhang, C. Neumann, A. Turchanin, A. Martin, N. Pinna, M. Seyring, M. Rettenmayr, J. R. Buchheim, P. Adelhelm, Advanced Functional Materials 2020, 30; cF. Klein, B. Jache, A. Bhide, P. Adelhelm, Physical Chemistry Chemical Physics 2013, 38, 15876-15887.