Triplet-triplet annihilation up-conversion sensitizes metal oxide nanoparticles for photocatalytic reactions
Sandra Patricia Gonzalez Lopez a, Julien Gorenflot a, Patrick Murton b, Maximilian Moser b, Iain McCulloch b, Frédéric Laquai a
a KAUST Solar Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia., Al-Jabriah, Yanbu Arabia Saudita, Yanbu, Saudi Arabia
b Department of Chemistry, University of Oxford, UK, Mansfield Rd, Oxford, United Kingdom
Materials for Sustainable Development Conference (MATSUS)
Proceedings of Materials for Sustainable Development Conference (MAT-SUS) (NFM22)
#NANOMAT - Advances on the Understanding and Synthesis of Nanomaterials for Photocatalysis and Optoelectronics
Barcelona, Spain, 2022 October 24th - 28th
Organizers: Ludmilla Steier and Daniel Congreve
Contributed talk, Sandra Patricia Gonzalez Lopez, presentation 190
DOI: https://doi.org/10.29363/nanoge.nfm.2022.190
Publication date: 11th July 2022

Many metal oxide semiconductors, such as TiO2, require UV excitation in order to drive photocatalytic reactions. However, UV photons account for only 3-5% of the solar spectrum, and thus strategies to extend the range of harvested photons into the visible wavelength range are required. One potential way is to use triplet-triplet annihilation photon up-conversion (TTA-UC). TTA-UC systems generate higher energy photons from lower energy, low intensity, and non-coherent excitation. In this work, we synthesized several 9,10-diphenylanthracene derivatives and attached them to different wide-bandgap metal oxide nanoparticles, TiO2, ZrO2, and CeO2, which were then dispersed in solutions containing triplet sensitizers. Triplet energy transfer leading to triplet-triplet annihilation photon up-conversion and charge generation were probed through steady-state and transient spectroscopy techniques such as photo-induced absorption (PIA), time-resolved photoluminescence (trPL), and transient absorption (TA) spectroscopy. We characterized these TTA-UC systems as films and suspensions and applied them in different photocatalytic processes as proof of concept.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info