Charge-carrier dynamics in lead-free metal halide semiconductors
Laura Herz a
a Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
Materials for Sustainable Development Conference (MATSUS)
Proceedings of Materials for Sustainable Development Conference (MAT-SUS) (NFM22)
#PbFreePero - The potential of lead-free perovskites: synthesis, properties, and applications
Barcelona, Spain, 2022 October 24th - 28th
Organizers: Loreta Muscarella, Eline Hutter and Hendrik Bolink
Invited Speaker, Laura Herz, presentation 003
DOI: https://doi.org/10.29363/nanoge.nfm.2022.003
Publication date: 11th July 2022

Organic-inorganic metal halide perovskites have emerged as attractive materials for solar cells with power-conversion efficiencies now exceeding 25%. However, challenges and opportunities remain relating to material microstructure, ionic migration and toxicity. While tin halide perovskites offer lead-free alternatives to the currently best-performing lead halide perovskites, their prevalence towards tin vacancy formation and oxidation makes these materials particularly unstable [1].

We have recently investigated ultrafast charge-carrier dynamics in lead-free silver-bismuth semiconductors[2-4] which promise lower toxicity and potentially higher barriers against ion migration than their more prominent lead-halide counterparts. We examined the evolution of photoexcited charge carriers in the double perovskite Cs2AgBiBr6 using a combination of temperature-dependent photoluminescence, absorption and optical pump−terahertz probe spectroscopy.[2] We observe rapid decays in terahertz photoconductivity transients that reveal an ultrafast, barrier-free localization of free carriers on the time scale of 1.0 ps to an intrinsic small polaronic state. While the initially photogenerated delocalized charge carriers show bandlike transport, the self-trapped, small polaronic state exhibits temperature-activated mobilities, allowing the mobilities of both to still exceed 1 cm2V−1s−1 at room temperature. Self-trapped charge carriers subsequently diffuse to color centers, causing broad emission that is strongly red-shifted from a direct band edge. Overall, our observations suggest that strong electron−phonon coupling in this material induces rapid charge-carrier localization which may inhibit the use of this material as an efficient light harvester in photovoltaic devices.

We further demonstrate the novel lead-free semiconductor Cu2AgBiI6 which exhibits several advantages over Cs2AgBiBr6, namely a low exciton binding energy of ~29 meV and a lower and direct band gap near 2.1 eV,[3,4,5] making it a significantly more attractive lead-free material for photovoltaic applications. However, charge carriers in Cu2AgBiI6 are found to exhibit similarly strong charge-lattice coupling strength[3] to that in Cs2AgBiBr6, suggesting a link with the presence of AgBi. Tuning such charge-lattice interactions therefore emerges as a serious challenge for this class of materials.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info