Energy-selective Plasmonic Nanoreactors
Erik Garnett a, Eitan Oksenberg a
a Center for Nanophotonics, AMOLF, Science Park, 104, Amsterdam, Netherlands
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Fall Meeting 2021 (NFM21)
#SPMEn21. Visualising nanoscale phenomena in functional materials
Online, Spain, 2021 October 18th - 22nd
Organizers: Stefan Weber, Brian Rodriguez and Juliane Borchert
Invited Speaker, Erik Garnett, presentation 085
DOI: https://doi.org/10.29363/nanoge.nfm.2021.085
Publication date: 23rd September 2021

Plasmonic resonances can concentrate light into exceptionally small volumes, approaching the molecular scale. The extreme light confinement provides an advantageous pathway to probe molecules at the surface of plasmonic nanostructures with highly sensitive spectroscopies, such as surface-enhanced Raman scattering. Unavoidable energy losses associated with metals, which are usually seen as a nuisance, carry invaluable information on energy transfer to the adsorbed molecules through the resonance linewidth. We measured a thousand single nanocavities with sharp gap plasmon resonances that spanned the red to near-infrared spectral range and used changes in their linewidth, peak energy and surface-enhanced Raman scattering spectra to monitor the energy transfer and plasmon-driven chemical reactions at their surface. Using methylene blue as a model system, we measured shifts in the absorption spectrum of molecules on surface adsorption and revealed a rich plasmon-driven reactivity landscape that consists of distinct reaction pathways that occur in separate resonance energy windows.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info