Proceedings of nanoGe Fall Meeting 2021 (NFM21)
DOI: https://doi.org/10.29363/nanoge.nfm.2021.081
Publication date: 23rd September 2021
Heterogeneous electrochemical processes, including photoelectrochemical water splitting to evolve hydrogen using electrocatalyst-coated semiconductors, are driven by the accumulation of charge carriers and thus the interfacial electrochemical potential gradients that promote charge transfer. Conventional electrochemical techniques measure/control potentials at the conductive substrate or semiconductor ohmic contact, but are unable to isolate processes and electrochemical potentials at the surface during operation. I will present our recent work demonstrating that the nanoelectrode tip of an atomic-force-microscope cantilever can effectively sense the surface electrochemical potential of electrocatalysts coating semiconductor photoelectrodes during operation. This technique allowed us to unambiguously show that metal (oxy)hydroxide layers act as both hole collectors and oxygen-evolution catalysts on metal-oxide photoanodes such as Fe2O3 and BiVO4. We also discovered the critical role that heterogeneous interfacial barrier heights, and a related nanoscale pinch-off effect, play in building carrier-selective interfaces in semiconductor photoelectrodes for generating fuel from sunlight. Recent results on Si, InP, and oxide based electrocatalyzed semiconductors will be discussed.