Perovskite Quantum Dots and Super-Resolution Optical Microscopy
Gabriele Raino a b, Leon Feld a b, Yevhen Shynkarenko a b, Franziska Krieg a b, Maksym Kovalenko a b
a ETH Zurich, Laboratory of Inorganic Chemistry, Department of Chemistry & Applied Biosciences, Vladimir-Prelog-Weg, 1, Zürich, Switzerland
b EMPA - Swiss Federal Laboratories for Materials Science and Technology, Überland Strasse, 129, Dübendorf, Switzerland
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Fall Meeting 2021 (NFM21)
#PerNC21. Perovskites II: Synthesis, Characterization, and Properties of Colloidal
Online, Spain, 2021 October 18th - 22nd
Organizers: Maksym Kovalenko, Ivan Infante and Lea Nienhaus
Invited Speaker, Gabriele Raino, presentation 056
DOI: https://doi.org/10.29363/nanoge.nfm.2021.056
Publication date: 23rd September 2021

Blinking nanoscale emitters, typically single molecules, are employed in single-molecule localization microscopy (SMLM) to overcome Abbe's diffraction limit, offering spatial resolution of few tens of nanometers. Colloidal quantum dots (QDs) feature high photostability, ultrahigh absorption cross-sections and brightness, as well as wide tunability of the emission properties, making them a compelling alternative to organic molecules. Here, CsPbBr3 nanocrystals, the latest addition to the QD family, are explored as probes in SMLM. Because of the strongly suppressed QD photoluminescence blinking (ON/OFF occurrence higher than 90%), it is difficult to resolve emitters with overlapping point-spread functions by standard dSTORM methods due to false localizations. A new workflow based on ellipticity filtering efficiently identifies false localizations and allows the precise localization of QDs with subwavelength spatial resolution. Aided by Monte-Carlo simulations, the optimal QD blinking dynamics for dSTORM applications is identified, harnessing the benefits of higher QD absorption cross-section and the enhanced QD photostability to further expand the field of QD super-resolution microscopy toward sub-nanometer spatial resolution.

References

[1] Advanced Optical Materials, https://doi.org/10.1002/adom.202100620

 

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info