Proceedings of nanoGe Fall Meeting 2021 (NFM21)
DOI: https://doi.org/10.29363/nanoge.nfm.2021.045
Publication date: 23rd September 2021
Since the last decade, electrolysis of water to produce green and renewable hydrogen fuel was one of the main interests in clean energy field. While water molecules are decomposed to hydrogen and oxygen, the latter serves as a limiting factor because of its sluggish kinetics and various catalysts that can mend this impediment are known. However, catalytic materials under electrochemical operation are subject to harsh chemical environments since they are located in solution, and as a result mechanical may appear in the material. The big challenge is to understand the correlation between the mechanical characteristics of materials and their catalytic performance. In this research we use theoretical methods in the field of computational materials science in order to explore the catalytic performance of NiOOH, one of the best catalysts existed for oxygen evolution reaction (OER), at different interlayer arrangements. NiOOH is a material with inner-layers and outstanding catalytic performance. The ability to lower the overpotential of NiOOH even further could give exceptional results in increasing the efficiency of the OER.