Proceedings of nanoGe Fall Meeting 2021 (NFM21)
DOI: https://doi.org/10.29363/nanoge.nfm.2021.003
Publication date: 23rd September 2021
The concept of optimal tuning of range-separated hybrid functionals has become an important tool for overcoming the fundamental gap problem and the charge transfer excitation problem in molecular systems. Here, this concept is extended to the solid state by introducing dielectric screening into the functional form. This approach, couched rigorously within the generalized Kohn-Sham formalism of density functional theory, can produce quantitatively the same one and two quasi-particle excitation picture given by many-body perturbation theory (MBPT), without any empiricism. Specifically, for covalent/ionic semiconductors and insulators, accurate band structures and optical absorption spectra, which agree well with those obtained from MBPT, are obtained. For molecular solids, the approach predicts the correct gap renormalization - even from single molecule calculations if a polarizable continuum model is used in an electrostatically consistent manner – and also predicts absorption spectra well.