Proceedings of nanoGe Fall Meeting19 (NFM19)
Publication date: 18th July 2019
Electrochemical reduction of carbon dioxide can produce a wide variety of products with poor control over selectivity and poor efficiency. The nature of the catalyst surface plays a central role in dictating the reaction activity, and researchers are working to develop new catalysts and uncover design principles enabling selective and efficient production of a desired product. A key challenge is that electrocatalyst structure is highly dependent on the applied electrochemical potential and the chemical environment, especially under the particularly reducing conditions required for CO2 reduction. Methods for in situ study of electrodes under operating conditions are therefore crucial.
In seeking to modify catalyst activity by surface functionalization, we discovered that sub-nm ALD coatings of SnO2 films onto CuO nanostructure electrodes led to huge changes in catalyst selectivity, converting CO2 to CO (carbon monoxide) with selectivity exceeding 80%. Since this behavior is atypical for either CuO or SnO2 electrodes themselves, a synergetic effect between the two components is likely. We employed X-ray spectroscopy to investigate the electronic states and chemical environments of Cu and Sn using soft and hard X-ray techniques at BESSY II. The presence of Sn influences the observed oxidation state of Cu near the surface, which remains partially oxidized (in comparison to fully reduced Cu which is observed in the absence of Sn). This result shows that electrocatalytic surfaces can be significantly affected by the presence of trace sub-surface dopants, causing changes in electronic structure which affect catalytic mechanisms and the resulting product selectivity.
The research group EE-NECC is supported by the Helmholtz Association Initiative and
Networking Fund and by Helmholtz-Zentrum Berlin für Materialien und Energie
We acknowledge Dr. Götz Schuck and Dr. Ronny Golnak for their help during hard and soft XAS measurements.