Proceedings of nanoGe Fall Meeting19 (NFM19)
DOI: https://doi.org/10.29363/nanoge.nfm.2019.318
Publication date: 18th July 2019
Recent progress in colloidal chemistry has enabled the fabrication of epitaxially-connected superlattices of PbX (X=Se, S, Te) nanocrystals with square or honeycomb geometry [1-2]. CdX nanocrystal superlattices can be derived using cation exchange process. In parallel, it is also possible to form hexagonal lattices in which the nanocrystals are still separated by their ligand shell. In this presentation, I discuss different aspects on the optical absorption process in these materials. It is shown that the absorptance of superlattices is considerably enhanced due to the epitaxial connections between neighbor nanocrystals. The resulting value is close to the quantum absorptance found in epitaxial two-dimensional films (quantum wells). I discuss the physics governing the variations of the aborptance from the case of isolated nanocrystals to closely-packed situations, i.e., hexagonal lattices of nanocrystals [3], epitaxial superlattices, up to the quantum well limit.In the case of superlattices in which the nanocrystals are epitaxially connected, I discuss the evolution of the local-field factor with the necking strength between neighbor nanocrystals.