Proceedings of nanoGe Fall Meeting19 (NFM19)
DOI: https://doi.org/10.29363/nanoge.nfm.2019.288
Publication date: 18th July 2019
Although hybrid perovskite solar cells currently feature record efficiencies well beyond 20%, the best open-circuit voltages (VOC) still fall short of what is expected from the radiative efficiency limit. The VOC is determined by carrier recombination processes in the solar cell including bulk, interface and/or contact recombination.[1] Under ideal conditions the open-circuit voltage approaches the internal quasi-Fermi level splitting (QFLS), which may be estimated by measuring the external photoluminescence quantum yield (PLQY) and the absorption properties [2]. On the other hand the PLQY and quasi-Fermi level splitting can also be estimated through time-resolved photoluminescence (TRPL), if the radiative recombination constant and absorption are taken into account [3]. An examination of the literature shows that the reported PLQY values and lifetimes for measured open-circuit voltages varies sometimes by orders of magnitude which is difficult to reconcile from a theoretical perspective. We present QFLS and Voc values derived from PLQY and TRPL for different halide perovskite materials and show that careful consideration of the above points leads to a consistent picture. Possible sources of error in the analysis will be discussed and guidelines how to cross-check data will be presented.