Formation Dynamics of Nanocrystals: In-situ Observation of the Growth of CdSe NCs Via Magic-sized Clusters Intermediates.
Cristina Palencia Ramírez a b, Robert Seher a b, Jan Krohn a, Felix Thiel a b, Felix Lehmkühler b c, Horst Weller a b
a University of Hamburg, Institute of Physical Chemistry, Hamburg, Germany
b The Hamburg Centre for Ultrafast Imaging
c Deutsches Elektronen-Synchrotron (DESY), Germany
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Fall Meeting19 (NFM19)
#NCFun19. Fundamental Processes in Semiconductor Nanocrystals
Berlin, Germany, 2019 November 3rd - 8th
Organizers: Ivan Infante and Jonathan Owen
Oral, Cristina Palencia Ramírez, presentation 207
DOI: https://doi.org/10.29363/nanoge.nfm.2019.207
Publication date: 18th July 2019

The pioneer synthesis of nanocrystals (NCs) published in 1993 opened up new routes to prepare highly monodisperse quantum dots. This, together with the outstanding electronical, optical and surface properties observed in different kinds of such semiconductor nanocrystals, has triggered an increased scientific interest on these nanomaterials. As a result, well-defined methods to synthesize and characterize NCs have been developed, and very precise control on the synthesis allows obtaining a variety of crystal structures, shapes and sizes. Despite this, usually these advances are the result of trial-mistake approaches and this is due to the lack of knowledge in the events concurring during the formation of such nanocrystals. The key point to investigate the formation dynamics of nanocrystals lies on the possibility to in-situ characterize nucleation and growth events, which take place from the millisecond to second time window.

To this aim, we have designed and assembled a state-of-the-art continuous-flow device to perform the synthesis of CdSe NCs at very different reaction conditions. The addition of optical flow cells and X-ray transparent flow cells enables in-situ characterization by means of optical spectroscopy and SAXS/WAXS experiments (synchrotron radiation facilities). With this reactor we have studied the growth dynamics of CdSe nanocrystals. Our results show that CdSe magic sized clusters are formed always as intermediates in the formation of CdSe nanocrystals. Whether they can be observed or not in solution depends mainly on the reaction temperature, which is closely related to the monomer concentration and the nucleation rate. A series of experiments utilizing worked-up CdSe clusters demonstrates our proposed new growth mechanism, according to which, CdSe nanocrystals are formed subsequently to burst dissolution of small CdSe magic sized clusters and further growth into larger clusters and nanocrystals. This new growth mechanism suggests that the classical nucleation theory, as we know it, is no longer suitable to explain formation processes in nanocrystals.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info