Materials for Robust, Inexpensive and High Performance Photoelectrochemical Fuel Production
Kevin Sivula a
a Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Fall Meeting19 (NFM19)
#SolFuel19. Solar Fuel Synthesis: From Bio-inspired Catalysis to Devices
Berlin, Germany, 2019 November 3rd - 8th
Organizers: Roel van de Krol and Erwin Reisner
Invited Speaker, Kevin Sivula, presentation 140
DOI: https://doi.org/10.29363/nanoge.nfm.2019.140
Publication date: 18th July 2019

The development of robust and inexpensive semiconducting materials that operate at high efficiency are needed to make the direct solar-to-fuel energy conversion by photoelectrochemical (PEC) cells economically viable. In this presentation the strategy of PEC solar fuel production is introduced and our laboratory’s progress in the development new light absorbing materials and co-catalysts will be discussed along with the application toward overall solar water splitting tandem cells for H2 production. Specifically, this talk will highlight recent results with the ternary oxides (CuFeO2 and ZnFe2O4) 2D transition metal dichalcogenides, and organic (π-conjugated) semiconductors as solution-processed photoelectrodes. With respect to ternary oxides, in our recent work [1,2] we demonstrate state-of-the-art photocurrent with optimized nanostructuring and addressing interfacial recombination by the electrochemical characterization of the surface states and attached co-catalysts. In addition, we report an advance in the performance of solution processed two-dimensional (2-D) WSe2 for high-efficiency solar water reduction by gaining insight into charge transport and recombination by varying the 2D flake size [3] and passivating defect sites [4]. Finally, with respect to π-conjugated organic semiconductors, in our recent work [5] we demonstrate a π-conjugated organic semiconductor for the sustained direct solar water oxidation reaction. Aspects of catalysis and charge-carrier separation/transport are discussed.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info