Oxide Bilayers as High Efficiency Water Oxidation Catalysts through Electronically Coupled Phase Boundaries
Sanjay Mathur a, Lasse Jürgensen a, Yakup Gönüllü a, Jennifer Leduc a, Thomas Fischer a
a Department of Chemistry, Inorganic Chemistry, University of Cologne, Greinstr. 6, Cologne 50939, Germany
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Fall Meeting 2018 (NFM18)
S2 Light Driven Water Splitting
Torremolinos, Spain, 2018 October 22nd - 26th
Organizers: Wolfram Jaegermann and Bernhard Kaiser
Oral, Thomas Fischer, presentation 337
DOI: https://doi.org/10.29363/nanoge.nfm.2018.337
Publication date: 6th July 2018

New semiconductor metal oxides capable of driving water-splitting reactions by solar irradiation alone are required for sustainable hydrogen production. Whereas most metal oxides only marginally deliver the photochemical energy to split water molecules, uranium oxides are efficient photoelectrocatalysts due to their absorption properties (Eg ~ 2.0 - 2.6 eV) and easy valence switching among uranium centers that additionally augment the photocatalytic efficiency. Although considered a scarce resource, the abundance of uranium compounds in the environment is manifested in the huge quantities of stored UF6 gas, produced as waste streams in the nuclear fuel enrichment process. Here we demonstrate that thin films of depleted uranium oxide (U3O8) and their bilayers with hematite (a-Fe2O3) are high activity water oxidation catalysts due to electronically coupled phase boundaries. The electronic structure of uranium oxides showed an optimal band edge alignment in U3O8//Fe2O3 bilayers (DFT calculations) resulting in improved charge-transfer at the heterojunction as supported by TAS and XAS measurements. The enhanced photocurrent density of the heterostructures with respect to well-known hematite offers unexplored potential of uranium oxide in artificial photosynthesis.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info