Proceedings of nanoGe Fall Meeting 2018 (NFM18)
DOI: https://doi.org/10.29363/nanoge.nfm.2018.270
Publication date: 6th July 2018
Sample preparation of perovskite materials has a crucial impact on their optoelectronic properties and has indeed been a dominant factor for the rapid advances in photoconversion efficiencies. However, very little is currently known about the microcopic details that determine the nucleation and crystal growth proces. Such a knowledge could be a starting point to enable control over the crystallization process and a rational optimization of preparation conditions.
In principle, molecular dynmaics simulations can provide atomistic insight into complex phenomena but direct simulations of the nucleation process are highly challenging due to the large activation barriers that are involved and the high-dimensionality of the available phase space. Here, we present enhanced sampling molecular dynamics simulations based on well-tempered metadynamics simulations about the nucleation process of lead halide perovskites from solution. Choosing appropriate collective varaibles, it has been possible for the first time to monitor the nucleation and growth of such a multicomponent system (containing, lead ions, halide anions, monovalent cations and solvent molecules). These simulations demonstrate the influence that different solvents play in this process and reveal a pivotal role of the monovalent cations.