Proceedings of nanoGe Fall Meeting 2018 (NFM18)
DOI: https://doi.org/10.29363/nanoge.nfm.2018.267
Publication date: 6th July 2018
Colloidal two-dimensional (2D) tin (II) sulfide (SnS) nanocrystals are now emerging as potential and promising nanomaterials for electronic and optoelectronic applications. This is due to lower toxicity compared to other metal chalcogenides, such as PbS, PbSe, CdS, CdSe. We present a new and simple method for the preparation of colloidal 2D SnS nanosheets with large size, tunable thickness and single-crystallinity. The synthesis is performed by using tin (II) acetate as precursor to replace the common used tin halides (e.g. tin chloride) and harmful precursor (bis[bis(trimethylsilyl)amino] tin(II). The lateral size of synthesized square nanosheets can be tuned from 150 nm to 500 nm, and the thickness in a range of 25 to 30 nm. In addition, hexagonal shaped SnS nanosheets can also be synthesized (lateral size: 200-1700 nm, thickness: 15-50 nm). We control the shape and size by varying the amounts of ligands and precursors, which is also supported by DFT simulations. The crystal phase can also be optimized from the mixture of pseudotetragonal structure (PT, from nanoparticle byproducts) and orthorhombic structure (OR, from main product nanosheets) into single-crystalline OR structure. The optoelectronic measurements show their impressive conductivity and highly sensitivity to light. These materials are thus promising regarding electronic and optoelectronic applications.