Proceedings of nanoGe Fall Meeting 2018 (NFM18)
DOI: https://doi.org/10.29363/nanoge.nfm.2018.261
Publication date: 6th July 2018
research results will be presented on nanomaterials as selective emitters and for near field radiative transfer for thermophotovoltaics and on tailored photonic glasses as non-iridescent structural colors.
of thermal radiation is a fundamental physical process defined by the dielectric properties of the thermally excited materials. Radiation into far field is described by Planck’s law and is limited by the blackbody emission. In near field, additional thermal energy transfer can be achieved due to evanescent fields, which are orders of magnitude larger than in far field. In the far field, emission, e.g. of long wavelengths below the energy of a semiconductor receiver band gap, can be suppressed in band edge emitters from nanostructured hyperbolic optical metamaterials as well as with resonantly coupled dielectric particle layers on top of plasmonic substrates. We demonstrate selective band edge emitters for thermophotovoltaic devices stable up to 1400°C based on W-HfO2 refractive metamaterials as well as ZrO2 based ceramic particles on tungsten. We further report on ceramic photonic structures as high-temperature compatible structural colors. A careful choice of the interplay between lattice and motif parameters of the photonic glass allows for structural colors with strong color saturation.
References
Shang, G.; Maiwald, L.; Renner, H.; Jalas, D.; Dosta, M.; Heinrich, S.; Petrov, A.; & Eich, M.; Photonic glass for high contrast structural color, Scientific Reports, 8, 7804 (2018)
Dyachenko, P.N.; Molesky, S.; Petrov, A.Y.; Stormer, M.; Krekeler, T.; Lang, S.; Ritter, M.; Jacob, Z.; and Eich, M.; Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions, Nature Communications, vol. 7, no. 11809, pp. 1–8, June 2016
Lang, S.; Sharma, G.; Molesky, S.; Kränzien, P.U.; Jalas, T.; Jacob, Z.; Petrov, A.Y.; and Eich, M.; Dynamic measurement of near-field radiative heat transfer, Scientific Reports, vol. 7, no. 1, p. 13916–13916, October 2017
Leib, E.W.; Pasquarelli, R.M.; do Rosario, J.J.; Dyachenko, P.N.; Doring, S.; Puchert, A.; Petrov, A.Y.; Eich, M.; Schneider, G.A.; Janssen, R.; Weller, H.; and Vossmeyer, T.; Yttria-stabilized zirconia microspheres: novel building blocks for high-temperature photonics, Journal of Materials Chemistry C, vol. 4, no. 1, pp. 62–74, January 2016