Proceedings of nanoGe Fall Meeting 2018 (NFM18)
DOI: https://doi.org/10.29363/nanoge.nfm.2018.254
Publication date: 6th July 2018
Slow carrier recombination in metal halide perovskites (MHP) is considered the origin of the observed large charge carrier diffusion length. However, the reasons for this slow charge carrier recombination remains unclear. In this report, on the basis of novel experimental data and the results of modeling, we propose that the observed long luminescence lifetimes in MHP are due to the extremely fast capture of carriers by shallow non-quenching traps, followed by their much slower release back to the conduction band. Multiple (tens to thousands of times) repetition of this loss-free process can explain the observed slow luminescence decay after pulsed photoexcitation (the so-called "delayed luminescence") [1, 2]. In the case of polycrystalline layers and in single crystals of MHP, the result of this multiple capture of carriers by shallow non-quenching traps are rather low values of the diffusion coefficient found for this type of materials [2].
REFERENCES
[1] Chirvony, V. S.; González-Carrero, S.; Suárez, I.; Galian, R. E.; Sessolo, M.; Bolink, H. J.; Martínez-Pastor, J. P.; Pérez-Prieto, J. Delayed luminescence in lead halide perovskite nanocrystals. J. Phys. Chem. C 2017, 121, 13381-13390.
[2] Chirvony, V. S.; Martínez-Pastor, J. P. Trap-limited dynamics of excited carriers and delayed luminescence in metal halide perovskites. J. Phys. Chem. Lett. 2018, accepted.