Proceedings of nanoGe Fall Meeting 2018 (NFM18)
DOI: https://doi.org/10.29363/nanoge.nfm.2018.242
Publication date: 6th July 2018
Metal-halide perovskites show exceptional optoelectronic properties for next generation photovoltaics and light-emitting diodes. Recently, monovalent cation substitution has been reported to generate luminescence very efficiently, yet the underlying photo-physics remain to be understood.
Here, we study the origin of this increased brightness by combining transient absorption and photoluminescence (PL) to track charge carrier dynamics in thin films. Unexpectedly, we find that the recombination regime changes from the previously-reported second to first order regime dynamically within tens of nanoseconds after excitation, in line with fluence-dependent PLQE measurements. In temperature-dependent PL we find a redshift of the luminescence with decreasing temperature, directly mapping localized shallow traps. Supported by DFT calculations and transistor measurements we propose that energetic disorder in the distribution of electronic states leads to spatial accumulation of charges, creating n- and p-type regions. Our results indicate that strong luminescence can be achieved in mixed-cation perovskites even at low carrier densities and thereby provides a roadmap for highly efficient LEDs.