Proceedings of nanoGe Fall Meeting 2018 (NFM18)
DOI: https://doi.org/10.29363/nanoge.nfm.2018.239
Publication date: 6th July 2018
To understand the characteristics of fuel cell electrodes, a compound of platinum nanoparticle-covered mesoporous carbon und ionomer, they have to be examined at a nanometer scale. Their structure, porosity, and the properties of the inner surfaces at this scale determine their behavior. In particular, the lateral variation of surface energy and ionomer coverage has a major influence on water balance and transport resistance. To visualize this structure in two dimensional cuts SEM is being used. Combined with material-sensitive AFM measurements physical surface properties can be derived and modeled. In this presentation an approach to model the inner structure of a fuel cell electrode and the properties of inner surfaces is presented. The electrode is examined with material-sensitive AFM. Derived from deformation, adhesion and DMT-modulus mappings, an automated separation into the different phases is put into effect. The so constructed segmented image is rendered into 3D by its height information.
By ion milling further cuts of the same material are being done in layers of few micrometers. The AFM analysis of these series can be used to generate a larger 3D model of the electrode. A method to combine the series of layers to a 3D-model is suggested.