GaP Template on Si for Solar Water Splitting: Surface Energy Engineering
Laurent Pedesseau a, Ida Lucci a, Simon Charbonnier b, Maxime Vallet c, Pascal Turban b, Yoan Leger a, Tony Rohel a, Nicolas Bertru a, Antoine Létoublon a, Jean-Baptiste Rodriguez d, Laurent Cerutti d, Eric Tournié d, Anne Ponchet c, Gilles Patriarche e, Charles Cornet a
a Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR6082, France, France
b Institut de Physique de Rennes, CNRS, Université de Rennes 1, Rennes, France
c CEMES-CNRS Université de Toulouse UPS 29 rue Jeanne Marvig BP 94347 Toulouse, Cedex 04, France
d IES Univ. Montpellier CNRS 860, France, Rue de Saint - Priest, Montpellier, France
e Centre de Nanosciences et de Nanotechnologies site de Marcoussis CNRS Université Paris Sud Université Paris Saclay route de Nozay 91460 Marcoussis, France
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Fall Meeting 2018 (NFM18)
S2 Light Driven Water Splitting
Torremolinos, Spain, 2018 October 22nd - 26th
Organizers: Wolfram Jaegermann and Bernhard Kaiser
Oral, Laurent Pedesseau, presentation 220
DOI: https://doi.org/10.29363/nanoge.nfm.2018.220
Publication date: 6th July 2018

The hydrogen production will play a major role for the energy transition. Recently, for water splitting context [1], [2], a demonstration of the efficiency enhancement of BiVO4 photoanodes has been shown in PEC devices[3] by simply a texturation of surfaces. Moreover, in the study of the semiconductor photocatalyst materials[4], GaP semiconductor appears to be a good candidate for photoelectrode in PEC devices[5]. One strong argument is to have at least 1.73 eV photopotential requirements for water splitting and its bandgap is larger and about 2.26 eV.

In this aim of water splitting applications, we propose a surface energy engineering for a large scale textured GaP template monolithically integrated on Si [6]. Based on experimental analysis and theory, the stability of the {114} facets is scrutinized by scanning tunneling microscopy images and also supported by density functional theory calculations. We then show that change of the surface energy for experimentally promoting the GaP(114) surface texturation can be achieved through (i) destabilizing the GaP(001) surface by using a vicinal Si substrate or through (ii) favoring the {114} facets formation by changing the group-V atmosphere above the surface on a miscut-free GaP substrate.

This work is supported by the French National Research Agency project ANTIPODE (Grant no. 14-CE26-0014-01) and Région Bretagne. The ab initio simulations have been performed on HPC resources of CINES under the allocation 2017-[x2017096724] made by GENCI (Grand Equipement National de Calcul Intensif).

[1] M. G. Walter et al., ‘Solar Water Splitting Cells’, Chem. Rev., vol. 110, no. 11, pp. 6446–6473, Nov. 2010.

[2] A. Fujishima and K. Honda, ‘Electrochemical Photolysis of Water at a Semiconductor Electrode’, Nature, vol. 238, no. 5358, p. 37, Jul. 1972.

[3] J. Zhao et al., ‘High-Performance Ultrathin BiVO4 Photoanode on Textured Polydimethylsiloxane Substrates for Solar Water Splitting’, ACS Energy Lett., vol. 1, no. 1, pp. 68–75, Jul. 2016.

[4] A. Kudo and Y. Miseki, ‘Heterogeneous photocatalyst materials for water splitting’, Chem. Soc. Rev., vol. 38, no. 1, pp. 253–278, 2009.

[5] E. E. Barton, D. M. Rampulla, and A. B. Bocarsly, ‘Selective Solar-Driven Reduction of CO2 to Methanol Using a Catalyzed p-GaP Based Photoelectrochemical Cell’, J. Am. Chem. Soc., vol. 130, no. 20, pp. 6342–6344, May 2008.

[6] I. Lucci at al., ‘A Stress‐Free and Textured GaP Template on Silicon for Solar Water Splitting’, Adv. Funct. Mat. Hot Topic: Water Splitting, 1801585, 2018

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info