Proceedings of nanoGe Fall Meeting 2018 (NFM18)
DOI: https://doi.org/10.29363/nanoge.nfm.2018.215
Publication date: 6th July 2018
Perovskite based solar cells have shown impressive progress in recent years. Now that high efficiencies are in reach, more and more effort is put into understanding the underlying device physics and to improve the devices intrinsic and extrinsic stability.
Touching on both of these subjects, I want to first discuss recent findings regarding the implementation of metal oxide layers into perovskite solar cell device stacks. These can be used to form impenetrable barrier layers which prevent the ingress of humidity as well the egress of perovskite decomposition products. Using this strategy, the overall decomposition of perovskite can be significantly suppressed, leading to outstanding solar cell device stability.
On the other hand, we find for a variety of systems that directly interfacing the perovskite to metal oxide layers can trigger a complex variety of reactions, which significantly alter the composition of the perovskite at the interface and lead to the presence of degradation products. These thin interlayers play an important role for film formation and charge extraction and will therefore influence the overall device performance.