Proceedings of nanoGe Fall Meeting 2018 (NFM18)
DOI: https://doi.org/10.29363/nanoge.nfm.2018.212
Publication date: 6th July 2018
We report recent experimental and theoretical results for molecular junctions based on \pi conjugated wires. These wires represent a class of linear molecules whose transport properties can be understood in the framework of the topological Su-Schrieffer-Heeger model for polyacetylene. We present an in-depth theoretical analysis based on tight-binding and ab-initio simulations of their coherent transport properties and show that, under certain conditions and depending on the chain parity (even /odd) and length, the conductance at the Fermi level can depend very weakly or even increase with the wire length. For short odd chains, we also provide experimental evidence of the role of the external environment in their charge transport properties: we study conductance trends in single-molecular junctions of polymethine dyes and prove that the trends can also be altered by the choice of the embedding solvent. Overall, our results suggest a way of enabling efficient electron transport at the nanoscale with one-dimensional wires.Iryna Davydenko