Setting Carriers Free – Healing Faulty Interfaces Promotes Delocalization and Transport in Nanocrystal Solids
Willem Walravens a, Filip Geenen b, Eduardo Solano d, Jolien Dendooven b, Athmane Tadjine e, Nayyera Mahmoud a c, Gunther Roelkens c, Christophe Delerue e, Christophe Detavernier b, Zeger Hens a
a Gent University - BE, Krijgslaan 281 - S3, Gent, Belgium
b Gent University - BE, Krijgslaan 281 - S3, Gent, Belgium
c Gent University - BE, Krijgslaan 281 - S3, Gent, Belgium
d NCD beamline, ALBA Synchrotron Light Source, Barcelona, Carrer de la Llum, 2, Cerdanyola del Vallès, Spain
e IEMN, Department ISEN, 41 boulevard Vauban, F-59046 Lille Cedex, France
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Fall Meeting 2018 (NFM18)
S5 Charge Carrier Dynamics at the Nanoscale
Torremolinos, Spain, 2018 October 22nd - 26th
Organizers: David Egger, Arjan Houtepen and Freddy Rabouw
Oral, Willem Walravens, presentation 208
DOI: https://doi.org/10.29363/nanoge.nfm.2018.208
Publication date: 6th July 2018

Nanocrystal building blocks can be assembled to make an artificial, nanocrystal solid. The choice of building block and the way they are assembled set up pathways to make new and unique materials with tailored properties. A case in point are superlattices of semiconductor nanocrystals or quantum dots (QDs), which find applications in, e.g., photodetectors, solar cells and field-effect transistors. Quantum dots offer the appealing combination of a tunable band gap, a high absorption coefficients, and a suitability for solution-based processing. QD films are typically produced through, e.g., spincoating, dropcasting or spraycoating. This results in disordered nanocrystal stacks, where poor electronic transport can be caused by excessive surface defects or restricted dot-to-dot hopping. To disentangle such effects, we analyzed the delocalization and transport of charge carriers in 2D superlattices of epitaxially connected QDs. In the case of PbS and PbSe QDs, such superlattices can be formed over several square micrometer. Using elemental analysis and structural analysis by in-situ XRF and GISAXS, respectively, we show that such lattices keep their structural integrity in a wide temperature window, ranging up to 310 ºC and more; an ideal starting point to assess the effect of gentle thermal annealing on the superlattice properties. We find that annealing such superlattices at temperatures ranging from 75-150 ºC induces a marked redshift of the QD band-edge transition. In fact, the band-edge found after annealing agrees, opposite from state-of-the-art literature, with theoretical predictions on charge carrier delocalization in such epitaxially connected superlattices. In addition, we observe a 1000-fold increases of the charge carrier mobility after mild annealing. While the superstructure remains intact at these temperatures, an XRD rocking curve analysis indicates that annealing markedly decreases the density of grain boundaries. This indicates that the presumably epitaxial connections between QDs in as-synthesized superlattices still form a major source of grain boundaries and defects, to an extend that carrier delocalization over multiple QDs is prevented and dot-to-dot transport remains strongly restricted.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info