Spin Properties in II-VI and Perovskites Colloidal Quantum Dots
Efrat Lifshitz a, Joanna Dehnel a, Alyssa Kostadinov a, Yahel Barak a
a Schulich Faculty of Chemistry, Russell Berrie Nanotechnology Institute, Solid State Institute, Technion,, Technion City, Haifa, 42000, Israel
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Fall Meeting 2018 (NFM18)
S4 Nanophotonics by Nanocrystals
Torremolinos, Spain, 2018 October 22nd - 26th
Organizers: Daniel Vanmaekelbergh and Zeger Hens
Oral, Efrat Lifshitz, presentation 180
DOI: https://doi.org/10.29363/nanoge.nfm.2018.180
Publication date: 6th July 2018

Colloidal semiconductor quantum dots (CQDs) have been at the forefront of scientific research for more than two decades, based on their size tunable properties. Although implementation of CQDs in opto-electronic devices already occurs, various fundamental issues with a direct impact on technology are left as open questions. Recent years showed an interest in the investigation of magneto-optical properties of various CQDs with substantial importance for opto-electronic and spin-based devices.

Here we include the study of two different CQD platforms: (1) Synthesis and magneto-optical characterization of spectrally stable pure and diluted magnetic semiconductor CQDs from the II-VI semiconductor family (e.g., CdTe/CdSe and Mn@CdTe/CdSe); (2) Magneto-optical characterization of perovskite CQDs of the type APbBr3 (A - methylamonium or Cs+). Both systems show intriguing spin properties of special scientific and technological interests. The uniqueness of the spin properties and their novelty will be the focus during the talk.

CdTe/CdSe colloidal quantum dots with special composition, including soft boundary (alloying) at the core/shell interface or a giant core or a shell, possess quasi type-II configuration and show blinking-free behavior. The Mn+2 doping induces internal spin interactions between photo-generated species and the dopant spins, leading to giant magnetization or to an internal energy transfer into the dopant orbitals, and consequence emission from host-dopant hybrid- or from dopant atomistic-states. The current study developed a method to position the Mn ions selectively either at the core or at the shell. The magneto-optical measurements, including the use of optically detected magnetic resonance, exhibited resonance transitions related to the coupling of the Mn electron and the nuclear spins with the individual photo-generated carriers. The work was done in collaboration with the laboratory of Prof. Volkan Hilmi Demir from Bilkent and University and NTU.

The perovskites are minerals that have been studied extensively in the past. They are the focus of new interest in recent years, due to their exceptional performance in photovoltaic cells. Perovskites semiconductors possess high absorption coefficients as well as long-range transport properties. Currently, they are also prepared in the form of CQDs with very interesting properties including ferroelectricity, magnetism and exciton effects. The magneto-optical measurements of excitons in CsPbBr3 as individuals were investigated by monitoring the micro-photoluminescence spectra in the presence of an external magnetic field, while monitoring either the circular or linear polarization components.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info