A comprehensive numerical study of the implications of s-shaped JV characteristics in perovskite solar cells
Marten Koopmans a, Jan Anton Koster a
a University of Groningen, The Netherlands, Nijenborgh, 4, Groningen, Netherlands
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Fall Meeting 2018 (NFM18)
S8 Modelling Perovskite Solar Cells from the Microscale to the Macroscale
Torremolinos, Spain, 2018 October 22nd - 26th
Organizers: Alison Walker and Claudio Quarti
Oral, Marten Koopmans, presentation 107
DOI: https://doi.org/10.29363/nanoge.nfm.2018.107
Publication date: 6th July 2018

In perovskite solar cells, achieving consistency in device fabrication is very difficult. Although it easy to measure whether a solar cell performs well, it is not always easy to determine what the problem is in case of a bad solar cell. Many devices that show less than ideal performance show a feature called an ‘s-shape’, where in the JV-characteristic a region exists where the second derivative of the current with respect to voltage is negative. If this s-shape occurs below Voc, this will dramatically decrease the fill factor. Until now some possible causes are known. It has been shown using drift diffusion simulations that in perovskite solar cells, s-shapes can exist under forward bias. Also from organic solar cells it is well known that poor charge transport can lead to s-shapes, but no comprehensive explanation has been shown on these s-shapes in perovskites as of yet.

In this contribution we identify all the processes and parameters that yield s-shapes in the JV-characteristic and can therefore give a complete story on the phenomenon of s-shapes in perovskite solar cells. Furthermore, the occurrence of s-shapes is linked to device characteristics such as transport layer mobility and effects such as charge buildup at certain bias voltages. This is done using very large amounts of simulated solar cells with different parameters, where parameters are chosen such that the whole parameter space of solar cells yielding s-shapes is swept. Each individual solar cell simulation is a drift diffusion simulation including mobile ions where n-i-p or p-i-n structures are assumed. The conclusions from the modeling can be used to pinpoint weak spots of fabricated solar cells and help improve device recipes and fabrication.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info