Proceedings of nanoGe Fall Meeting 2018 (NFM18)
DOI: https://doi.org/10.29363/nanoge.nfm.2018.066
Publication date: 6th July 2018
Colloidal CdSe nanoplatelets (NPLs), also known as colloidal quantum wells, exhibit interesting properties such as narrow emission lines and atomic controlled thicknesses. To selectively tune the electrical and optical properties of these highly interesting nanomaterials, several methods have been developed to yield either core/shell or core/crown NPLs. Moreover, it has recently been shown that those NPLs can also be converted into nanorings with a toroidal topology.1 It is hypothesized that this new geometry exhibits interesting properties such as the presence of magnetoexcitonic states and terahertz absorption. Until know, not much knowledge has been obtained about this new geometric shape of CdSe.
In our research, we optimize the synthesis procedure of NPLs and subsequently etch the NPLs to obtain the characteristic ring-like geometry of nanorings. To reveal information about the obtained particles, we use a wide range of techniques such as time-resolved PL spectroscopy, single dot spectroscopy, AFM and TEM. From these experiments, the electrical and optical properties can be determined. As such, we take the first steps to extend the knowledge about this unexplored geometry of CdSe.
1. Fedin, I.; Talapin, D. V., Colloidal CdSe Quantum Rings. J Am Chem Soc 2016, 138 (31), 9771-4.