Perovskite-type Oxynitrides LaTaO2N and LaTaON2 – Synthetic Strategies
Cora Bubeck a, Marc Widenmeyer a, Gunther Richter b, Mauro Coduri c, Eduardo Salas Colera c, Songhak Yoon a, Frank Osterloh d, Anke Weidenkaff a
a University of Stuttgart, Institute for Material Science, Stuttgart, Heisenbergstraße, 3, Stuttgart, Germany
b Central Scientific Facility Thin Film Laboratory, Max Planck Institute for Intelligent Systems, Stuttgart, Heisenbergstraße, 3, Stuttgart, Germany
c European Synchrotron Radiation Facility (ESRF), France, Avenue des Martyrs, 71, Grenoble, France
d Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA, Davis, United States
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Fall Meeting 2018 (NFM18)
S2 Light Driven Water Splitting
Torremolinos, Spain, 2018 October 22nd - 26th
Organizers: Wolfram Jaegermann and Bernhard Kaiser
Oral, Cora Bubeck, presentation 041
DOI: https://doi.org/10.29363/nanoge.nfm.2018.041
Publication date: 6th July 2018

LaTaON21,2 is a well-known perovskite-type material with defined composition, oxidation state, and physical properties, which make it favorable for solar water splitting.3 This Ta5+-containing oxynitride can be synthesized, e.g. from LaTaO4. The crucial synthetic step for perovskite-type oxynitrides is the ammonolysis, typically a thermal treatment in flowing NH3. Several parameters such as temperature and heating ramp, reaction time, and gas flow rate have to be carefully adjusted.4,5 Besides, the anionic composition can be altered via the adjustment of the precursor reactivity. A thorough tuning of all above mentioned parameters allowed us a controlled variation of the anionic composition from LaTaON2 to LaTaO2N. This consequently leads to a reduction of Ta5+ to Ta4+. A great influence of this oxidation state change on the physical properties, particularly the light absorption, the charge separation, and the surface redox activity, is expected.6

References:

(1)         Marchand, R.; Pors, F.; Laurent, Y. Ann. Chim. Fr. 1991, 16, 553–560.

(2)         Marchand, R.; Antoine, P.; Laurent, Y. J. Solid State Chem. 1993, 107, 34–38.

(3)         Liu, M.; You, W.; Lei, Z.; Takata, T.; Domen, K.; Li, C. Chinese J. Catal. 2006, 27 (7), 556–558.

(4)         Ebbinghaus, S. G.; Abicht, H. P.; Dronskowski, R.; Müller, T.; Reller, A.; Weidenkaff, A. Prog. Solid State Chem. 2009, 37 (2-3), 173–205.

(5)         Widenmeyer, M.; Peng, C.; Baki, A.; Xie, W.; Niewa, R.; Weidenkaff, A. Solid Sate Sci. 2016, 54, 7–16.

(6)         Bubeck, C.; Widenmeyer, M.; Richter, G.; Coduri, M.; Salas Colera, E.; Yoon, S.; Osterloh, F.; Weidenkaff, A. in preparation.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info