Electrochemical Conversion of CO2 toward Valuable Chemicals for Solar-to-Chemical Conversion Application
Yun Jeong Hwang a, Byoun Koun Min a, Hyeong-Suk Oh a
a Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, South Korea, Seoul, Korea, Republic of
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Fall Meeting 2018 (NFM18)
S1 Solar Fuel 18
Torremolinos, Spain, 2018 October 22nd - 26th
Organizers: Shannon Boettcher, David Egger, Laura Herz, Joaquim Puigdollers, Arjan Houtepen, Tianquan Lian, Alejandro Perez-Rodriguez, Kevin Sivula, Tze-Chien Sum, Alison Walker, Mischa Bonn, Claudio Quarti and Freddy Rabouw
Keynote, Yun Jeong Hwang, presentation 031
DOI: https://doi.org/10.29363/nanoge.nfm.2018.031
Publication date: 6th July 2018

Electrochemical CO2 conversion can be coupled with a photovoltaic cell and provide a pathway to utilize solar energy for the chemical synthesis. Ideally, such artificial photosynthesis system want to use CO2 and H2O as feed-stock molecules to produce value-added chemicals such as fuels or raw chemicals. My research team reported a monolithic and stand-alone device composed of a photovoltaic cell module, an Au CO2 reduction, a cobalt oxide anode accomplishing over 4 % conversion efficiency for CO2 conversion to CO production. To improve the solar to chemical conversion efficiency and to increase the feasibility further, we have developed efficient electrocatalysts and replaced the photovoltaic cell with Si modules, achieving ~ 8% of solar-to-CO conversion efficiency.

In addition, in this talk, metal-based electrocatalysts interacting with p-block elements or surface mediated molecules will be discussed for selective CO or C2+ (i.e. ethylene) production from CO2 reduction. The experimental results and theoretical simulation with various different types of metal catalysts (Ag, Zn, and Cu) give insights how to suppress the hydrogen evolution reaction (HER) is crucial to achieve efficient CO2 reduction catalysts. Monodispersed Ag nanoparticles are suggested to have the special interaction between the surface Ag and the surface mediated molecules which can modify the local electronic structure favoring for the selective CO production (up to 95 % of Faradaic efficiency). In addition, in the case of selective ethylene production, special Cu nanostructure formed by in-situ electrochemical fragmentation is demonstrated to be effective for increasing C-C bond coupling (up to 73 % of Faradaic efficiency) and selective ethylene production (up to ~ 60 % of Faradaic efficiency). In-situ X-ray absorption spectroscopy (XAS) studies are performed to understand the catalyst activity. Our series of studies suggests the modification of the metal nanoparticle surface by oxygen atom or surface mediated molecules can be effective strategies to increase CO2 reduction reaction activity and stability.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info