Proceedings of nanoGe Fall Meeting 2018 (NFM18)
DOI: https://doi.org/10.29363/nanoge.nfm.2018.026
Publication date: 6th July 2018
In recent years, the interest in hybrid organic - inorganic perovskites rose at a rapid pace due to their tremendous success in the field of photovoltaic; but other fields, like light emitting diodes, show great potential as well. In such devices, the function and performance depend crucially on the proper alignment of the energy level landscape throughout the device, i.e. allowing for efficient charge transport across the various interfaces. Here, an advantage of these novel semiconductors is that the electronic structure and band gap energy can be readily tuned by changing the compositions of the perovskite.
In this talk, I will discuss recent findings regarding the variations in electronic structure of hybrid perovskites, covering all lead and tin based halide systems using a combined DFT and UV-/ inverse/ x-ray photoelectron spectroscopy study. Furthermore, with these surface sensitive techniques, the energetic alignment at interfaces between different layers can be probed in-situ by performing a stepwise film preparation. Looking at various bottom contacts I will show that chemical interactions, band bending, and interface dipole formation play an important role.