Engineering solution-processed semiconductor materials for photoelectrochemical solar fuel production
Kevin Sivula a
a Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe September Meeting 2017 (NFM17)
SF1: Material and Device Innovations for the Practical Implementation of Solar Fuels (SolarFuel17)
Barcelona, Spain, 2017 September 4th - 9th
Organizers: Wilson Smith and Ki Tae Nam
Invited Speaker, Kevin Sivula, presentation 029
Publication date: 20th June 2016

The development of robust and inexpensive semiconducting materials that operate at high efficiency are needed to make the direct solar-to-fuel energy conversion by photoelectrochemical cells economically viable. In this presentation our laboratory’s progress in the development new light absorbing materials and co-catalysts will be discussed along with the application toward overall solar water splitting tandem cells for H2 production. Specifically, this talk will highlight recent results with the ternary oxide CuFeO2, 2D transition metal dichalcogenides, and organic (π-conjugated) semiconductors as solution-processed photoelectrodes.

With respect to CuFeO2, in our recent work [1] we demonstrate state-of-the-art sacrificial p-type photocurrent with optimized nanostructuring. Recent results addressing interfacial recombination by the electrochemical characterization of the surface states and attached co-catalysts will be presented along with approaches to overcome the limitations of this material.

In addition, two-dimensional (2-D) transition metal dichalcogenides (TMDs) generally have intriguing electronic properties making them promising candidates for high-efficiency solar energy conversion. However, it is notoriously difficult to fabricate thin films of 2-D TMDs over the large areas required to convert solar energy on a practical scale. We recently developed a simple method to fabricate high-quality thin films of 2-D layered TMDs at low cost and with good efficiency towards solar-to-fuel energy conversion [2]. The challenges with charge transport, separation [3] and water redox catalysis in these systems will also be discussed with respect to the 2D flake size.

Finally, with respect to π-conjugated organic semiconductors, in our recent work [4] we demonstrate a π-conjugated organic semiconductor for the sustained direct solar water oxidation reaction. Aspects of catalysis and charge-carrier separation/transport are discussed.

 

[1] Prevot, M. S.; Li, Y.; Guijarro, N.; Sivula, K. J. Mater. Chem. A 2016, 4, 3018-3026.

[2] Yu, X.; Prevot, M. S.; Guijarro, N.; Sivula, K., Nat. Commun. 2015, 6, 7596.

[3] Yu, X.; Rahmanudin, A.; Jeanbourquin, X. A.; Tsokkou, D.; Guijarro, N.; Banerji, N.; Sivula, K. ACS Energy Lett. 2017, 2, 524.

[4] Bornoz, P.; Prévot, M. S.; Yu, X.; Guijarro, N.; Sivula, K. J. Am. Chem. Soc. 2015, 137, 15338.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info