Proceedings of September Meeting 2016 (NFM16)
Publication date: 14th June 2016
Recently, the methylammonium lead triiodide compound, (CH3NH3)PbI3, and the related family with perovskite-type structure, have attracted great attention for low cost photovoltaic solar-cells, with an efficiency over 20 %.[1] However and despite this breakthrough, perovskite solar cells have to overcome several drawbacks towards commercial viability (such as lead toxicity, long-term stability, moisture instability, etc.).[2] In addressing materials beyond the photovoltaic (CH3NH3)PbI3 (MAPbI3) hybrid perovskite, very recently, Mancini et al.[3] reported the analogous dimethylammonium (DMA) compound, [(CH3)2NH2]PbI3, which shows 2H-perovkite structure at room temperature even if with hexagonal symmetry, space-group P63/mmm. This compound shows an optical band-gap Eg=2.39 eV, which is similar to that of the also photovoltaic MAPbBr3 analogous compound.[4] The aim of this work is to deepen in the structural characteristics of this new perovskite [(CH3)2NH2]PbI3, compound and look for possible phase transitions.We report that this [(CH3)2NH2]PbI3 compound with 2H-perovskite structure, experiences a first order transition at T»250 K from P63/mmc (high temperature HT-phase) to P21/c (low temperature LT-phase) which involves three cooperative processes: (i) an off-center shift of the Pb2+ cations, (ii) an order-disorder process of the N-atoms of the DMA cations and (iii) a change in the orientation of these latter cations. Unlike the analogue MAPbI3 compound, the DMAPbI3 perovskite is stable for several months and shows thermal stability up-to 350 ºC.[5]
The authors are grateful for the financial support from the Ministerio de Economía y Competitividad MINECO and EU-FEDER (project ENE2014-56237-C4-4-R) and Xunta de Galicia (project GRC2014/042).
References
[1] (a) M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science, 2012, 338, 643. (b) M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt and M. Grätzel, Energy Environ. Sci. 2016, 9, 1989.
[2] P. P. Boix, S. Agarwala, T. M. Koh, N. Mathews, S. G. Mhaisalkar, J. Phys. Chem. Lett., 2015, 6, 898.
[3] A. Mancini, P. Quadrelli, G. Amoroso, C. Milanese, M. Boiocchi, A. Sironi, M. Patrini, G. Guizzetti, L. Malavasi, J. Solid State Chem., 2016, 240, 55.
[4] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Nano Lett., 2013, 13, 1764.
[5] A. García-Fernández, J. M. Bermúdez-García, S. Castro-García, A. L. Llamas-Saiz, R. Artiaga, J. López-Beceiro, S. Hu, W. Ren, A. Stroppa, M. Sánchez-Andújar and M. A. Señarís-Rodríguez, J. Mater. Chem. C (submmitted).