Highly luminescent nanocrystals of cesium lead halide perovskites
Maksym Kovalenko a
a Swiss Federal Institute of Technology ETH Zurich, Switzerland
Materials for Sustainable Development Conference (MATSUS)
Proceedings of September Meeting 2016 (NFM16)
Berlin, Germany, 2016 September 5th - 13th
Organizers: Marin Alexe, Enrique Cánovas, Celso de Mello Donega, Ivan Infante, Thomas Kirchartz, Maksym Kovalenko, Federico Rosei, Lukas Schmidt-Mende, Laurens Siebbeles, Peter Strasser, Teodor K Todorov, Roel van de Krol and Ulrike Woggon
Oral, Maksym Kovalenko, presentation 146
Publication date: 14th June 2016

Chemically synthesized inorganic nanocrystals (NCs) are considered to be promising building blocks for a broad spectrum of applications including electronic, thermoelectric, and photovoltaic devices. We have synthesized monodisperse colloidal nanocubes (4-15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors [1]. Their bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410-700 nm. The photoluminescence of CsPbX3 NCs is characterized by narrow emission line-widths of 12-42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90% and radiative lifetimes in the range of 4-29 ns. Identical synthesis methodology is perfectly suited also for hybrid perovskites CH3NH3PbX3 [2].Post-synthestic chemical transformations of colloidal NCs, such as ion-exchange reactions, provide an avenue to compositional fine tuning or to otherwise inaccessible materials and morphologies. While cation-exchange is facile and commonplace, anion-exchange reactions have not received substantial deployment. Here we present fast, low-temperature, deliberately partial or complete anion-exchange in CsPbX3 NCs [3]. By adjusting the halide ratios in the colloidal NC solution, the bright photoluminescence can be tuned over the entire visible spectral region (410-700 nm). Furthermore, fast inter-NC anion-exchange is demonstrated as well, leading to uniform CsPb(Cl/Br)3 or CsPb(Br/I)3 compositions simply by mixing CsPbCl3, CsPbBr3 and CsPbI3 NCs in appropriate ratios. We also present low-threshold amplified spontaneous emission and lasing from CsPbX3 NCs[4]. We find that room-temperature optical amplification can be obtained in the entire visible spectral range (440-700 nm) with low pump thresholds down to 5±1 µJ cm-2 and high values of modal net gain of at least 450±30 cm-1. Two kinds of lasing modes are successfully realized: whispering gallery mode lasing using silica microspheres as high-finesse resonators, conformally coated with CsPbX3 NCs, and random lasing in films of CsPbX3 NCs.  L. Protesescu et al. Nano Letters 2015, 15, 3692–3696 O. Vybornyi et al. Nanoscale 2016, DOI: 10.1039/C5NR06890H G. Nedelcu et al. Nano Letters 2015, 15, 5635–5640 S. Yakunin et al. Nature Communications 2015, 9, 8056.



© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info