Proceedings of September Meeting 2016 (NFM16)
Publication date: 14th June 2016
Nanocrystalline fluorophores like semiconductor quantum dots and rods and recently also lanthanide-based upconversion phosphors with emission in the visible (vis), near-infrared (NIR), and IR (infrared) region are increasingly being used in bioimaging studies and fluorescence assays as well as in photovoltaics and solid state lighting. The assessment and comparison of material performance as well as the development of rational design strategies for improved systems require spectroscopic tools, which enable the determination of the signal-relevant optical properties like photoluminescence quantum yields and brightness values. In the case of nonlinear fluorescence as shown by upconversion materials, such measurements must be also performed as function of excitation power density. In this work, we report on methods for the absolute determination of the fphotoluminescence quantum yield and brightness of fluorescent particles in dispersion and as powders based on integrating sphere spectroscopy and underline the importance of such measurements for the understanding of the photophysics of such nanocrystals.