Proceedings of nanoGe September Meeting 2015 (NFM15)
Publication date: 8th June 2015
Organic solar cells rely on the conversion of a Frenkel exciton into free charges via a charge transfer state formed on a molecular donor-acceptor pair. These charge transfer states are strongly bound by Coulomb interactions, and yet efficiently converted into charge-separated states. A microscopic understanding of this process, though crucial to the functionality of any solar cell, has not yet been achieved. Here we show how long-range molecular order and interfacial mixing generate homogeneous electrostatic forces that can drive charge separation and prevent minority-carrier trapping across a donor-acceptor interphase. Comparing a variety of small-molecule donor-fullerene combinations, we illustrate how tuning of molecular orientation and interfacial mixing leads to a tradeoff between photovoltaic gap and charge-splitting and detrapping forces, with consequences for the design of efficient photovoltaic devices.