Partially graphitic structure-assisted hard carbon derived from lignin for sodium-ion battery anodes
Mu-Seong Lim a, Ji Su Chae a, Kwang chul Roh a
a Energy Storage Materials Center, Korea Institute of Ceramic Engineering & Technology, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2025 Conference (MATSUSSpring25)
Post-Lithium Technologies toward Sustainable Batteries - #SusBatT
Sevilla, Spain, 2025 March 3rd - 7th
Organizers: Ivana Hasa, Nagore Ortiz Vitoriano and Manuel Souto
Poster, Mu-Seong Lim, 553
Publication date: 16th December 2024

The increasing demand for efficient energy storage has led to increased research on sodium-ion batteries (SIBs) as a promising alternative to lithium-ion batteries. However, the anode materials currently employed in lithium-ion batteries are not suitable for SIBs, highlighting the need for the development of appropriate anode materials. In this study, cellulose- and lignin-rich residues extracted from wood biomass were converted to hard carbon, and their performance as anode materials for SIBs was evaluated. Cellulose and lignin were separated from larch wood using a deep eutectic solvent, followed by carbonization to produce CF-1300C and LF-1300C, respectively. Lignin undergoes partial graphitization at elevated temperatures, enhancing its electrical conductivity and forming ion insertion and extraction pathways. LF-1300C demonstrated higher crystallinity than CF-1300C owing to this graphitization and featured an interlayer spacing of approximately 0.43 nm, which facilitates sodium-ion insertion. Consequently, LF-1300C achieved a higher initial discharge capacity and Coulombic efficiency (350 mAh g⁻¹ and 74%, respectively) than CF-1300C (331 mAh g⁻¹ and 71%, respectively). Furthermore, LF-1300C exhibited a 21% and 84% improvement in rate capability and cycle retention, as compared with CF-1300C. These results indicate that hard carbon with a partially graphitized structure exhibits significant potential for use as an anode material in SIBs, especially in cases where existing crystalline materials present challenges. This study highlights the advantages of lignin-derived hard carbon as a superior anode material for SIBs, providing an eco-friendly and scalable solution for energy storage.

Industry & Energy (MOTIE, Korea) and the Technology Innovation Program RS-2024-00409900 (Development of a Polyolefin-Based Ceramic Coating Separator for Sodium-Ion Batteries) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info