The physics of inverted hysteresis and intermediate frequency impedance features in perovskite solar cells
Giles Richardson a, Will Clarke a, Petra Cameron b, Matt Cowley b, Alison Walker b, Matt Wolf b
a University of Southampton, Southampton, United Kingdom
b University of Bath, Bath BA2 7AY, United Kingdom, United Kingdom
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2025 Conference (MATSUSSpring25)
Numerical device modelling and SIMulation of SOLar cells and Light Emitting Diodes: methodologies and applications - #SIMUSOLED
Sevilla, Spain, 2025 March 3rd - 7th
Organizers: Juan A. Anta and Sandra Jenatsch
Invited Speaker, Giles Richardson, presentation 417
DOI: https://doi.org/10.29363/nanoge.matsusspring.2025.417
Publication date: 16th December 2024

In this talk we set out to explain the physics that gives rise to two surprising phenomena that are frequently observed in perovskite solar cells, namely inverted hysteresis (IH) and the appearance of a third (intermediate frequency) feature in PSC impedance plots. Both these phenomena are caused by the leakage of charge carriers from one of the transport layers into the perovskite in sufficient numbers that they are able to partially screen electric fields in the interior of the perovskite layer.  In order to better understand these phenomena, we analyze the standard drift-diffusion model of a planar three-layer PSC, using asymptotic techniques, to derive a reduced order model capable of describing the screening effects in the perovskite layers arising both from the presence of ions (which redistribute slowly) and from that of charge carriers (which adjust almost instantaneously). This approximate reduced order model shows excellent agreement with numerical simulations to the full drift-diffusion model and provides fundamental insights into the causes of inverted hysteresis reconciling the alternative explanations of this phenomenon found in the literature. Furthermore it can be used to explain the appearance of the third (intermediate frequency) feature in PSC impedance plots. Understanding why these atypical phenoneman occur is important for the device physicist because their appearance can be used to diagnose certain properties of the cell. 

 

 

 

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info