Insights on Perovskite Single Crystals: Synthesis, Characterization and Applications
Clara Aranda Alonso a
a Center for Nanoscience and Sustainable Technologies (CNATS). Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Sevilla, Spain
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2025 Conference (MATSUSSpring25)
The claim for sustainable materials in long lasting application - #EmergingPV
Sevilla, Spain, 2025 March 3rd - 7th
Organizers: Matteo Bonomo, Luigi Angelo Castriotta and Francesca De Rossi
Invited Speaker, Clara Aranda Alonso, presentation 412
DOI: https://doi.org/10.29363/nanoge.matsusspring.2025.412
Publication date: 16th December 2024

Perovskites face significant stability challenges arising from both extrinsic factors like humidity and intrinsic issues linked to their ionic nature. These stability limitations hinder the long-term performance of perovskite-based devices. Mastering crystallization processes, whether in thin films or bulk, is a critical step in overcoming these obstacles. High-quality, highly crystalline materials are essential not only for enhanced stability but also for reliable characterization, which is key to understanding the mechanisms governing device operation. 

Monocrystalline perovskites offer a compelling alternative to conventional thin films, benefiting from the absence of grain boundaries and their associated defects. Achieving these high-quality materials demands precise control over synthesis methods to improve both material properties and stability. 

In this contribution, we will explore diverse synthesis approaches for perovskite single crystals, including the widely used inverse temperature crystallization (ITC) with seed-assisted growth, adaptations for multi-halide-core crystals and confined-growth methods. We will also introduce two innovative techniques: a continuous-flow reactor for large-scale crystal growth and a novel dry synthesis methodology for narrow-bandgap perovskites. 

Furthermore, we will present advanced and non-conventional characterization techniques applicable to these materials, both as stand-alone crystals and in optoelectronic devices. Finally, we will demonstrate the remarkable stability of high-crystallinity perovskite single crystals, including their performance under extreme conditions such as gamma radiation, highlighting their potential for space applications. 

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info