Highly Luminescent Indium Phosphide Magic-Sized Clusters via Kinetically Controlled Surface Fluorination
Himchan Cho a
a Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea, Korea, Republic of
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2025 Conference (MATSUSSpring25)
III-V Quantum Dots and Beyond: Pioneering Core-only and Core-Shell Structures for Future Applications - #III-VQD
Sevilla, Spain, 2025 March 3rd - 7th
Organizers: Ivan Infante and Liberato Manna
Invited Speaker, Himchan Cho, presentation 410
DOI: https://doi.org/10.29363/nanoge.matsusspring.2025.410
Publication date: 16th December 2024

Achieving high photoluminescence quantum yield (PLQY) in magic-sized clusters (MSCs) of III-V semiconductors such as indium phosphide (InP) remains a significant challenge due to their strong oxophilicity and high sensitivity to surface defects. Here, we report the synthesis of highly luminescent InP MSCs through a novel kinetically controlled surface fluorination strategy. Utilizing the Friedel–Crafts acylation reaction, we generated hydrogen fluoride (HF) in a controlled manner, enabling effective surface passivation. This approach mitigated non-radiative recombination pathways by removing surface oxides and stabilizing surface defects, resulting in a PLQY of ~18%, the highest reported for InP MSCs. Comprehensive analyses, including PL lifetime measurement, transient absorption spectroscopy, and X-ray photoelectron spectroscopy, revealed that the enhanced luminescence arises from reduced surface trap states. Structural integrity and uniformity were confirmed through X-ray diffraction, Raman spectroscopy, and extended X-ray absorption fine structure analysis, demonstrating the preservation of the zinc-blende MSC framework. These findings not only advance the understanding of III-V MSCs but also highlight the potential of InP MSCs as environmentally benign, monodisperse, and highly efficient emissive materials for next-generation optoelectronic applications.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info